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Motivating example

Ideas:
« Collect more data =—  Try dropout
* C(Collect more diverse training set  Add L, regularization

 Train algorithm longer with gradient descent + Network architecture
 Try Adam instead of gradient descent « Activation functions
 Try bigger network  # hidden units

 Try smaller network * .. Andrew Ng
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TV tuning example
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Chain of assumptions in ML
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Setting up
your goal
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Using a single number evaluation metric
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Another example

L Y % / 5:
Algorithm US China India Other
3% 7% 5% 9%

5% 6% 5% 10%
2% 3% 4% 5%
5% 8% 7% 2%
4% 5% 2% 4%
7% 11% 8% 12%
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Another cat classification example
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Cat classification dev/test sets
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True story (details changed)

medium income zip codes

(Optimizing on dev set on loan approvals for

/

[Tested on low inconE z1p codes AN @
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)

Choose a dev set and test set to reflect data you

—————

A 4V
expect to get 1n the future and consider important

to do well on.
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Old way of splitting data
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Si1ze of dev set A S

Set your dev set to be big enough to detect differences in

IR

algorithm/models you're tryiﬁlg out.
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Size of test set

— Set your test set to be big enough to give high confidence

in the overall performance of your system.
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Orthogonalization for cat pictures: anti-porn

- 1. So far we've only discussed how to define a metric to
evaluate classifiers. & €l ~Yegd Lo

- 2. Worry separately about how to do well on this metric. 1o
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Another example
Algorithm A: 3% error
/ Algorithm B: 5% error <

— Devl/test —> User 1mages </

If doing well on your metric + dev/test set does not

correspond to doing well on your application, change your
metric and/or dev/test set.
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Comparing to human-level performance
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Why compare to human-level performance

Humans are quite good at a lot of tasks. So long as
ML 1s worse than humans, you can:

—= -  (Get labeled data from humans. (x, 3)

— - Gain insight from manual error analysis:
Why did a person get this right?

—> - Better analysis of bias/variance.
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Comparing to human-
level performance
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Bias and Variance

high bias “Just right” high variance
w&ef@iﬁiy okt
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Bias and Variance

Cat classification
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Cat classification example
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Comparing to human-
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Human-level error as a proxy for Bayes error

Medical image classification example:

Suppose:
(a) Typical human ................... 3 % error
—>%o) Typical doctor ....vvvvvvvnnnnnn.... 1% error]
(c) Experienced doctor ............... 0.7 % error

—> (Sd) Team of experienced doctors .. 0.5 % error\ <—
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What 1s “human-level” error?
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Error analysis example
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Summary of bias/variance with human-level
performance
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Comparing to human-
level performance

Surpassing human-
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Surpassing human-level performance
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Problems where ML significantly surpasses
human-level performance

= - Online advertising

—~ - Product recommendations

- Medsdl

— - Logistics (predicting transit time) et Cln o

~ - Loan approvals
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The two fundamental assumptions of
supervised learning

1. You can fit the training set pretty well. Je
3V IAJD\'ML“ L‘_M

2. The training set performance generalizes pretty 1o
well to the dev/test set. <

~ Uuﬂ'mu&-

—

Andrew Ng



Reducing (avoidable) bias and variance

Human-level Train bigger model
A . L. .
. Train longer/better optimization algorithms
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